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Abstract

The growing availability of genome-wide association studies (GWAS) and large-scale biobanks provides
an unprecedented opportunity to explore the genetic basis of complex traits and diseases. However,
with this vast amount of data comes the challenge of interpreting numerous associations across
thousands of traits, especially given the high polygenicity and pleiotropy underlying complex
phenotypes. Traditional clustering methods, which identify global patterns in data, lack the resolution
to capture overlapping associations relevant to subsets of traits or genes. Consequently, there is a
critical need for innovative analytic approaches capable of revealing local, biologically meaningful
patterns that could advance our understanding of trait comorbidities and gene-trait interactions.
Here, we applied BiBit, a biclustering algorithm, to transcriptome-wide association study (TWAS)
results from PhenomeXcan, a large resource of gene-trait associations derived from the UK Biobank.
BiBit allows simultaneous grouping of traits and genes, identifying biclusters that represent local,
overlapping associations. Our analyses uncovered biologically interpretable patterns, including
asthma-related biclusters enriched for immune-related gene sets, connections between eye traits and
blood pressure, and associations between dietary traits, high cholesterol, and speci�c loci on
chromosome 19. These biclusters highlight gene-trait relationships and patterns of trait co-occurrence
that may otherwise be obscured by traditional methods. Our �ndings demonstrate that biclustering
can provide a nuanced view of the genetic architecture of complex traits, o�ering insights into
pleiotropy and disease mechanisms. By enabling the exploration of complex, overlapping patterns
within biobank-scale datasets, this approach provides a valuable framework for advancing research
on genetic associations, comorbidities, and polygenic traits.

Introduction

The availability of genome-wide association studies (GWAS) and large-scale biobanks, which house
extensive genomic and phenotypic data, has revolutionized our ability to investigate the biology
underlying complex traits and diseases [1,2]. These resources allow researchers to identify genetic loci
associated with various traits, o�ering a broad view of genetic in�uences on disease susceptibility and
comorbidity. However, the immense scale of GWAS data from diverse populations and phenotypes
presents challenges for interpretation and synthesis [3]. As more GWAS �ndings accumulate,
understanding how these genetic variants contribute to the polygenic and pleiotropic nature of
complex traits becomes increasingly critical [4]. This complexity necessitates innovative analytical
approaches to uncover and interpret subtle, biologically meaningful relationships within large
datasets.

Traditional clustering methods, such as -means or hierarchical clustering, have been widely applied
to biological data to group traits or genes based on global patterns [5,6,7]. These methods have been
e�ective in identifying broad patterns across entire datasets, grouping either samples or genes
according to shared characteristics. However, complex traits and diseases often exhibit polygenic
architectures where speci�c genes interact with multiple traits, and certain traits share overlapping
genetic in�uences. Traditional clustering fails to capture these local, overlapping patterns [8],
especially in high-dimensional data, where subsets of genes might only be relevant to subsets of
traits. In such cases, biclustering approaches [9] o�er a solution by simultaneously grouping genes
and traits, identifying local patterns that re�ect biological speci�city. While some studies have
demonstrated the e�ectiveness of biclustering in gene expression analysis [10,11], its application to
GWAS or TWAS data remains limited, leaving an unmet need for methods that can disentangle the
intricate connections within these associations.

In the realm of complex traits, transcriptome-wide association studies (TWAS) o�er an additional layer
of insight by linking genetic variants to gene expression and, subsequently, to traits [12,13,14,15].
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TWAS integrates gene-trait associations across tissues, enhancing our ability to infer potential causal
genes and pathways underlying GWAS loci. However, even with TWAS, it remains challenging to
interpret the vast array of gene-trait associations in a biologically meaningful way. Although TWAS has
been instrumental in identifying genes involved in individual traits [16], understanding how these
genes contribute to trait comorbidity and pleiotropy across many traits and tissues requires an
advanced analytical approach that can manage high-dimensional, interdependent data relationships.
Therefore, a key gap in the �eld is the need for methods that can capture these overlapping, complex
associations in a way that supports the biological interpretation of TWAS results, particularly across
the wide phenotypic spectrum represented in biobank-scale datasets.

In this study, we address this gap by applying a biclustering approach to TWAS results from
PhenomeXcan [17], an extensive resource derived from the UK Biobank [2]. Our method uses BiBit
[18], a biclustering algorithm that simultaneously groups traits and genes based on local patterns of
association. This approach enables the detection of overlapping biclusters where a subset of genes
may be linked to multiple traits and vice versa, o�ering a nuanced view of gene-trait interactions. Our
analyses reveal several biologically relevant biclusters, such as those connecting immune-related gene
sets to asthma diagnoses, linking eye traits with blood pressure, and associating dietary and
cholesterol traits with genes on chromosome 19. These �ndings demonstrate the utility of biclustering
for uncovering patterns that enhance our understanding of complex trait architecture and open new
avenues for exploring disease mechanisms and comorbidities.

Results

Overview of the biclustering approach

To explore patterns within TWAS results from the UK Biobank, we utilized PhenomeXcan [17], a
comprehensive resource of gene-trait associations based on 4,091 GWAS summary statistics from
publicly available data [19] and the UK Biobank [2]. We applied the S-MultiXcan approach [14], a cross-
tissue method that aggregates gene-trait associations across tissues from PrediXcan [12,13],
enhancing statistical power for gene-trait associations. This yielded an association matrix containing 
-values for 4,091 traits and 22,515 genes.
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Figure 1:  Schematic of the computational analyses. a) The BiBit biclustering algorithm was applied to the S-
MultiXcan association matrix to identify biclusters—rectangles where subsets of traits (rows) are associated with subsets
of genes (columns). b) Biclusters were grouped based on gene overlap using a clustering algorithm on the Jaccard
similarity coe�cient. c) Gene Ontology (GO) and Disease Ontology (DO) over-representation analysis was performed on
grouped biclusters to assess biological pathway representation.
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To capture local patterns of gene-trait associations, we applied the BiBit biclustering algorithm, which
detects optimal biclusters in a binarized gene-trait association matrix (see Figure 1a). We binarized the
matrix using a Bonferroni-corrected -value threshold ( ), allowing BiBit to detect
associations where all gene-trait pairs in each bicluster met this signi�cance threshold. BiBit yielded
20,494 biclusters, with each bicluster representing gene and trait subsets that share a statistically
signi�cant association. The resulting data and interactive exploration tools are available at
https://pivlab.github.io/biclustering-twas/.

Asthma-related biclusters are enriched for immune-related gene sets

To determine if the biclustering approach could capture biologically meaningful patterns, we focused
on biclusters containing asthma-related traits. Given the overlap in biclusters, we grouped similar
biclusters into meta-biclusters based on gene overlap (Figure 1b). Our steps included: 1) selecting
biclusters with asthma-related traits (self-reported asthma, ICD-10 codes J45/J46, and age of asthma
onset) and at least 10 associated genes, 2) calculating the Jaccard similarity coe�cient for pairwise
bicluster comparisons, 3) clustering biclusters with high gene overlap, yielding 10 meta-biclusters, and
4) performing over-representation analyses for Gene Ontology (GO) terms (for genes) and Disease
Ontology (DO) terms (for traits) to assess distinct biological mechanisms for asthma.

Figure 2:  Functional enrichment of asthma-related biclusters. Enrichment analyses of 10 asthma-related meta-
biclusters revealed distinct GO terms across genes (top) and DO terms across traits (bottom), illustrating pathway and
disease enrichment for asthma susceptibility.

p 5.49 × 10−10



As shown in Figure 2, each meta-bicluster was enriched for unique GO and DO terms. Nine of the ten
meta-biclusters demonstrated distinct GO enrichment, suggesting diverse biological pathways
contributing to asthma. For example, meta-bicluster C6 included traits such as celiac disease, systemic
lupus erythematosus, and type 1 diabetes, with genes localized to the HLA region on chromosome 6,
underscoring its role in autoimmunity. Other meta-biclusters, such as C8, were associated with
allergic diseases and the age of asthma onset, with strong links to the 17q12-21 locus, a well-
established region for early-onset asthma [20,21,22]. Consistent with a large study on pleiotropy [4],
these results suggest that a combination of genes seems to be speci�c to a particular combination of
traits.

Biclusters associated with eye measurements

We next investigated biclusters linked to eye-related traits to understand potential gene-trait
connections in ocular health. Two notable biclusters involved traits like “Age started wearing glasses”
and keratometry measurements alongside blood pressure.

Figure 3:  Biclusters associated with eye measurements. Two biclusters showing associations between “Age started
wearing glasses” and keratometry measurements (left), and blood pressure (right). Eye traits are marked with an
asterisk; cells contain -scores derived from -values.

In Figure 3, the left table shows the bicluster associated with “Age started wearing glasses” and
keratometry measures, while the right table displays associations with blood pressure. The gene
TXLNB, involved in muscle function [23], was notable in these associations, aligning with research
linking blood pressure with eye health [24]. These �ndings indicate potential links between eye traits
and blood pressure mediated by genes in�uencing muscular and vascular function.

Biclusters associated with anthropometric traits

We also identi�ed biclusters related to anthropometric traits, which included a diverse array of body
composition metrics.

Figure 4:  Bicluster associated with anthropometric traits. A bicluster showing associations between 15
anthropometric traits, such as BMI and hip circumference, and 68 genes, a subset of which are shown. Cells contain -
scores derived from -values.

As shown in Figure 4, this bicluster includes 15 traits related to body composition, including BMI,
weight, and measurements of fat and lean mass. Key genes, such as TFAP2B and USP36, have roles in
adipogenesis and metabolic regulation, suggesting involvement in body composition pathways. These
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genes support the hypothesis that speci�c genetic networks in�uence distinct aspects of
anthropometric traits, including fat and lean mass distribution.

Biclusters associated with high cholesterol and dietary traits

Finally, we identi�ed biclusters connecting high cholesterol with dietary and metabolic traits.

Figure 5:  Bicluster associated with high cholesterol and dietary traits. This bicluster shows associations among
high cholesterol, cholelithiasis, dietary intake, and speci�c genes located on chromosome 19. Cells are -scores derived
from -values, with conditional formatting to highlight signi�cance.

Figure 5 displays a bicluster associated with high cholesterol, cholelithiasis, and dietary traits,
including processed meat intake, �sh intake, and sodium levels. Genes in this cluster, such as RASIP1,
FUT1, FUT2, and IZUMO1, are located within a gene-dense region on chromosome 19. This region,
associated with macronutrient intake through genes like FGF21 [25], suggests links between diet and
chronic conditions such as obesity and diabetes. This bicluster highlights how dietary factors may
interact with cholesterol metabolism, o�ering insights into gene-diet interactions relevant to
metabolic health.

These results demonstrate that biclustering provides a framework to identify biologically relevant
gene-trait relationships, supporting the exploration of complex traits and comorbidities within large
biobank datasets.

Discussion

This study leverages a biclustering approach, speci�cally the BiBit algorithm, to reveal complex
associations within TWAS data, providing insights into the genetic architecture of multiple traits in the
UK Biobank. By capturing both gene-trait and trait-trait patterns, we uncovered biologically relevant
associations such as asthma-related immune gene clusters, eye trait associations with keratometry
and blood pressure, and anthropometric traits connected to genes involved in adipogenesis and
metabolic regulation. These �ndings underscore the potential of biclustering to enhance our
understanding of pleiotropy and trait comorbidities, o�ering a novel framework for exploring the
polygenic and interconnected nature of complex traits.

One strength of our study is the use of biclustering to detect local patterns that traditional clustering
methods may overlook. While traditional clustering captures only global patterns, biclustering allows
for the simultaneous grouping of genes and traits, revealing gene sets associated with speci�c trait
subgroups. This �exibility is particularly bene�cial in complex, polygenic traits like asthma, where
subsets of genes and phenotypes contribute to distinct pathways. While this approach successfully
identi�ed asthma-related clusters enriched for immune-related pathways, the reliance on binary input
and a Bonferroni-corrected -value threshold may limit the detection of more subtle associations.

z
p

p



Nonetheless, the identi�ed asthma biclusters are consistent with previous studies on autoimmune
and allergic pathways, supporting the validity of our �ndings.

A limitation to consider is that our biclustering approach does not incorporate tissue speci�city, which
can a�ect gene-trait associations in TWAS data. The integration of tissue-speci�c data could re�ne the
resolution of our biclusters and enhance the biological relevance of the �ndings. For instance,
incorporating tissue information could help distinguish genes that in�uence systemic traits from
those a�ecting tissue-speci�c phenotypes, such as eye or respiratory conditions. Future studies could
address this limitation by using tissue-aware biclustering methods or incorporating multi-omic data to
capture more nuanced layers of biological regulation.

Additionally, while we observed biclusters associating anthropometric traits with genes like TFAP2B
linked to skeletal and adipogenic pathways, our �ndings rely on existing TWAS data that may re�ect
genetic correlations rather than causal relationships. Although TWAS improves on GWAS by
prioritizing likely causal genes, causal inference remains a challenge due to potential confounders and
linkage disequilibrium e�ects. Future work could employ Mendelian randomization or �ne-mapping to
validate the causal roles of identi�ed genes within these biclusters, thereby strengthening the
biological interpretations of our �ndings.

Despite these limitations, our study makes a signi�cant contribution to the �eld by demonstrating
how biclustering can uncover multi-dimensional patterns in TWAS data, an approach that is highly
adaptable to other biobank-scale datasets. By revealing new connections between genes and
phenotypes, this method provides a foundation for future research on genetic correlations,
pleiotropy, and disease comorbidity, fostering new avenues for understanding the biological pathways
underpinning complex traits. Moreover, the interactive online resource we provide allows other
researchers to explore the identi�ed biclusters, potentially catalyzing novel hypotheses and
collaborative e�orts to validate and expand upon our �ndings.

In conclusion, this work advances the �eld by presenting an innovative analytical framework that
bridges gaps in current GWAS and TWAS studies, empowering researchers to interpret and synthesize
the large volumes of data from biobanks like the UK Biobank. Our approach holds promise for
accelerating biomedical discovery by facilitating the identi�cation of complex trait architectures and
may serve as a valuable tool for exploring the polygenic basis of traits and diseases in the post-GWAS
era.

Methods

Gene-trait associations with TWAS

We used PhenomeXcan [17], a large resource of TWAS results with gene-tissue-trait associations
across 4,091 diseases and traits from the UK Biobank [2] and other cohorts, 49 tissues from GTEx, and
more than 22,000 genes. PhenomeXcan was built using publicly available GWAS summary statistics
from Neale’s lab (GWAS round 2 [19]) to compute 1) gene-based associations with the PrediXcan
family of methods [12,13,14], including Summary-PrediXcan (S-PrediXcan) [13], which generates gene-
tissue-trait associations, and Summary-MultiXcan (S-MultiXcan) [14], which combines tissue-speci�c
results from S-PrediXcan to generate gene-trait associations; and 2) a locus regional colocalization
probability (RCP) between GWAS loci and cis-eQTL (i.e., the overlapping of prioritized causal variants
for a trait and for a gene’s expression) with fastENLOC, a Bayesian hierarchical model for large-scale
data [17,26]. The PrediXcan family of methods �rst builds prediction models using data from the
Genotype-Tissue Expression project (GTEx v8) [27] for gene expression imputation and then correlates
this predicted expression with the phenotype of interest.



Biclustering analysis

We used a biclustering method that can jointly model pleiotropic genes and polygenic traits by
allowing overlapping biclusters. For this, we applied the BiBit algorithm [18] on gene-trait associations
from PhenomeXcan.

Since BiBit works on binary data, given a matrix  (  = 4,091 traits and  = 22,515 genes) with -
values from S-MultiXcan, we de�ned the binary matrix , with  if , and 

otherwise, where  was set to a Bonferroni signi�cant -value ( ). A bicluster 
 corresponds to a subset of traits  that are all jointly associated with a

subset of genes , such that .

Hierarchical clustering of biclusters and functional analyses

Biclusters across the entire set of results can have di�erent degrees of overlap, which means that they
can be grouped into several clusters. These clusters can be summarized by the frequency of
phenotypes and genes across their biclusters. Thus, we proceeded as follows: 1) select all biclusters
containing at least 10 genes and a disease of interest, such as an asthma diagnosis (self-reported
asthma, ICD-10 codes J45/J46, and age of asthma onset); 2) perform a pairwise comparison of all these
biclusters using the Jaccard similarity coe�cient over their associated genes; 3) run a hierarchical
clustering algorithm (average linkage) and obtain 10 groups of biclusters; 4) perform an over-
representation analysis of Gene Ontology (GO) terms to compare those 10 groups of biclusters and
assess whether their genes represent known and distinct biological mechanisms for the disease of
interest; the same analysis can be done using the Disease Ontology (DO) terms on the traits.

M n×m n m p

En×m Eij = 1 Mij < t Eij = 0

t p 5.49 × 10−10

Bℓ = (Tℓ,Gℓ) Tℓ ⊂ {1, … , n}
Gℓ ⊂ {1, … , m} Mij < t, ∀i ∈ Tℓ, ∀j ∈ Gℓ
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